
Jarrar © 2023 1

Mustafa Jarrar
Birzeit University

Mustafa Jarrar: Lecture Notes on Description Logic,
Birzeit University, 2023

Description Logic
(and business rules)

Jarrar © 2022
2

More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/AI

Watch this lecture
and download the slides

http://www.jarrar.info/
http://www.jarrar.info/courses/AI/

Jarrar © 2023 3

This lecture

qWhat and Why Description Logic

q ALC Description Logic

q Reasoning services in Description Logic

Lecture Keywords:
Logic, Description Logic, DL, ALC Description Logic, SHOIN, AL, DLR, Tbox, Abox, Reasoning, Reasoning
services, Reasoners, Racer, HermiT, Business Rules, Conceptual Modeling, satisfiability, Unsatisfiability,

 ،لمعلا دعاوق،جاتنتسلاا دعاوق ،جاتنتسلاا ماھم ،يقطنملا جاتنتسلاا ،طابنتسلاا ،يفصولا قطنملا ،قطنملا
 ضقانتلا ،دودحلا ،ةیقطنملا لمجلا ةحص، جاتنتسلاا قرط ،ةیمیھافملا ةجذمنلا

Jarrar © 2023 4

Reading Material

• * The slides in this lecture are based on and modify material largely from [2]

1. All slides + everything I say
2. Prof. Enrico Franconi: Lecture notes on Description Logic

http://www.inf.unibz.it/~franconi/dl/course/

3. D. Nardi, R. J. Brachman. An Introduction to Description Logics. In the
Description Logic Handbook, edited by F. Baader, D. Calvanese, D.L.
McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University Press, 2002,
pages 5-44.

http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-01.pdf
4. Sean Bechhofer, “The DIG Description Logic Interface: DIG/1.1 ”

http://racer-systems.com/dl.php?file=NativeLibraries%252FDIGinterface11.pdf&typ=file&name=DIGinterface11.pdf

Only Sections 2.1 and 2.2 are required (= the first 32 pages)

http://www.inf.unibz.it/~franconi/dl/course/
http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-01.pdf
http://racer-systems.com/dl.php?file=NativeLibraries/DIGinterface11.pdf&typ=file&name=DIGinterface11.pdf

Jarrar © 2023 5

Why Description Logics?

•If FOL is directly used without some kind of restriction, then

• The structure of the knowledge/information is lost (no
variables, concepts as classes, and roles as properties),

• The expressive power of FOL is too high for having good
(computational properties and efficient procedures).

Based on [2]

Jarrar © 2023 6

Description Logics
• Description logics are a family of logics concerned with knowledge

representation.

• A description logic is a decidable fragment of first-order logic,
associated with a set of automatic reasoning procedures.

• The basic constructs for a description logic are the notion of a concept
and the notion of a relationship.

• Complex concept and relationship expressions can be constructed from
atomic concepts and relationships with suitable constructs between
them.

• Example: HumanMother⊑ Female⊓ $HasChild.Person

Jarrar © 2023 7

Axioms, Disjunctions and Negations

"x. Teaching-Assistant(x) ® ¬ Undergrad(x) Ú Professor(x)
Teaching-Assistant ⊑ ¬Undergrad ⊔ Professor

•A necessary condition in order to be a teaching assistant is to be
either not undergraduated or a professor. Clearly, a graduated
student being a teaching assistant is not necessarily a professor;
moreover, it may be the case that some professor is not graduated.
"x. Teaching-Assistant(x) ↔ ¬ Undergrad(x) Ú Professor(x)
Teaching-Assistant ≐ ¬Undergrad ⊔ Professor

•When the left-hand side is an atomic concept, the ⊑ symbol
introduces a primitive definition (giving only necessary conditions)
while the ≐ symbol introduces a real definition, with necessary and
sufficient conditions.

In general, it is possible to have complex concept expressions at the
left-hand side as well.

Based on [2]

Jarrar © 2023 8

Description Logics

A more practical and expressive description logic.
C, D ® A | ⊤ | ⊥|¬A | C ⊓ D | "R.C | $R.⊤

ALC

Very expressive description logic,
Capable of representing most database constructs.

DLRidf

Very popular description logic.
The logic underlying OWL.

SHOIN

The simplest and less expressive description logic.
C, D ® A | C ⊓ D | "R.C | $R

FL¯

Most known description logics are :

Jarrar © 2023 9

ALC Description logic (Syntax and Semantic)

Constructor Syntax Semantics

Primitive concept A AI Í DI

Primitive role R RI Í DI ´ DI

Top ⊤ DI

Bottom ⊥ f
Complement ¬C DI \ CI

Conjunction C ⊓ D CI Ç DI

Disjunction C ⊔ D CI È DI

Universal quantifier "R.C {x | "y. RI (x,y) ® CI(y)}
Extensional quantifier $R.C {x | $y. RI (x,y) Ù CI(y)}

Woman ⊑ Person ⊓ Female
Parent ⊑ Person ⊓ $hasChild.⊤

Man ⊑ Person ⊓ ¬Female
NotParent ⊑ Person ⊓ $hasChild.⊥

Examples:

Jarrar © 2023 10

Closed Propositional Language
• Conjunction (⊓) is interpreted as intersection of sets of individuals.

• Disjunction (⊔) is interpreted as union of sets of individuals.

• Negation (¬) is interpreted as complement of sets of individuals.

$R.⊤Û $R.
¬(C ⊓ D) Û ¬C ⊔ ¬D
¬(C ⊔ D) Û ¬C ⊓ ¬D
¬("R.C) Û $R.¬C
¬($R.C) Û"R.¬C

Based on [2]

Jarrar © 2023 11

Formal Semantics

An interpretation I = (DI , .I) consists of:
a nonempty set DI (the domain)
a function .I (the interpretation function)
that maps

every individual to an element of DI

every concept to a subset of DI

every role to a subset of DI ´ DI

An interpretation function .I is an extension function if and only if
it satisfies the semantic definitions of the language.

Based on [2]

Jarrar © 2023 12

DL Knowledge Base
DL Knowledge Base (S) normally separated into two parts:

S = áTbox, Aboxñ
TBox (Terminological Box) is a set of axioms in the form of
(C ⊑ D , C ≐ D) describing structure of domain (i.e., schema),

Example:
HappyFather ≐ Man ⊓ $hasChild.Female
Elephant ⊑ Animal ⊓ Large ⊓ Grey

ABox (Assertion Box) is a set of axioms in the form of
(C(a), R(a, b)) describing a concrete situation (data),

Example:
HappyFather (John)
hasChild(John,Mary)

Jarrar © 2023 13

Knowledge Bases (Example)
Tbox:

Student ≐ Person ⊓ $NAME.String ⊓
$ADDRESS.String ⊓
$ENROLLED.Course

$TEACHES.Course ⊑ ¬Undergrad ⊓ Professor

Abox:
Student(Ali)
ENROLLED(Ali, Comp338)
(Student ⊔ Professor)(Dima)

Based on [2]

Jarrar © 2023 14

TBox: Descriptive Semantics

An interpretation I satisfies the statement C ⊑ D if CI Í DI.
An interpretation I satisfies the statement C ≐ D if CI = DI.

An interpretation I is a model for a TBox T if I satisfies all
statements in T .

Based on [2]

Jarrar © 2023 15

Abox Interpretation
If I = (DI, .I) is an interpretation,

C(a) is satisfied by I if aI Î CI.
R(a, b) is satisfied by I if (aI, bI) Î RI.

A set A of assertions is called an ABox.

An interpretation I is said to be a model of the ABox A if every
assertion of A is satisfied by I. The ABox A is said to be satisfiable if
it admits a model.

Based on [2]

An interpretation I = (DI, .I) is said to be a model of a knowledge
base S if every axiom of S is satisfied by I.
A knowledge base S is said to be satisfiable if it admits a model.

Jarrar © 2023 16

Logical Implication

TBox:

$TEACHES.Course⊑ ¬Undergrad ⊔ Professor
ABox:

TEACHES(Rami,Comp338), Course(comp388),
Undergrad(Rami)

Based on [2]

S ╞ a if every model of S is a model of a

Example:

S ╞ Professor(Rami) ?

Jarrar © 2023 17

Logical Implication

• What if:

TBox:
$TEACHES.Course⊑ Undergrad ⊔ Professor

ABox:
TEACHES(Rami,Comp388), Course(Comp388),
Undergrad(Rami)

S ╞ Professor(Rami) ?

S ╞ ¬Professor(Rami) ?

Based on [2]

Jarrar © 2023 18

Reasoning Services
ØRemember that a DL is typically associated with reasoning

procedures.
ØThere are several primitive/common reasoning services that most

DL reasoners support:

Concept Satisfiability
S |¹ C º ⊥ Student ⊓ ¬Person
the problem of checking whether C is satisfiable w.r.t. S, i.e. whether there exists a model I of S

such that CI ¹ f

Subsumption
S ⊨ C ⊑ D Student ⊑ Person
the problem of checking whether C is subsumed by D w.r.t. S, i.e. whether CI Í DI in every model I

of S

Satisfiability
S ⊨ Student ≐ ¬Person
the problem of checking whether S is satisfiable, i.e. whether it has a model.

Based on [2]

Jarrar © 2023 19

Reasoning Services (cont.)

Instance Checking
S ⊨ C(a) Professor(john)
the problem of checking whether the assertion C(a) is satisfied in every model of S

Retrieval
{a | S ⊨ C(a) } Professor Þ Dima

Realization
{C | S ⊨ C(a) } Dima Þ Professor

Based on [2]

Jarrar © 2023 20

Reduction to Satisfiability
Concept Satisfiability

S ⊨ C º ⊥ ↔ exists x s.t. S È {C(x)} has a model.

Subsumption
S⊨ C ⊑ D ↔ S È {C ⊓ ¬D(x)} has no models.

Instance Checking

S ⊨ C(a) ↔ S È {¬C(x)} has no models.

¬D
D

C

Based on [2]

Jarrar © 2023 21

Some extensions of ALC
Constructor Syntax Semantics

Primitive concept A AI Í DI

Primitive role R RI Í DI ´ DI

Top ⊤ DI

Bottom ⊥ f
Complement ¬C DI \ CI

Conjunction C⊓D CI Ç DI

Disjunction C⊔D CI È DI

Universal quantifier "R.C {x | "y.RI (x,y) ® CI(y)}
Extensional quantifier $R.C {x | $y.RI (x,y) Ù CI(y)}

Jarrar © 2023 22

Some extensions of ALC
Constructor Syntax Semantics

Primitive concept A AI Í DI

Primitive role R RI Í DI ´ DI

Top ⊤ DI

Bottom ⊥ f
Complement ¬C DI \ CI

Conjunction C⊓D CI Ç DI

Disjunction C⊔D CI È DI

Universal quantifier "R.C {x | "y.RI (x,y) ® CI(y)}
Extensional quantifier $R.C {x | $y.RI (x,y) Ù CI(y)}

Cardinality (N)
≥n R {x | #{y | RI(x,y)} ≥ n}
≤n R {x | #{y | RI(x,y)} ≥ n}

Qual. cardinality (Q)
≥n R.C {x | #{y | RI(x,y) Ù CI(y)} ≥ n}
≤n R.C {x | #{y | RI(x,y) Ù CI(y)} ≥ n}

Enumeration (O) {a1 … an} {aI
1 … aI

n}
Selection (F) f : C {x Î Dom(fI) | CI(fI(x))}

Jarrar © 2023 23

Cardinality Restriction

Role quantification cannot express that a woman has at least 3 (or at

most 5) children.
Cardinality restrictions can express conditions on the number of fillers:

BusyWoman ≐ Woman ⊓ ($≥ 3 CHILD)

ConsciousWoman ≐ Woman ⊓ ($≤ 5 CHILD)

Notice:

($≥1 R) Û ($R.)

Based on [2]

Jarrar © 2023 24

Cardinality Restriction

BusyWoman ≐ Woman ⊓ ($≥ 3 CHILD)
ConsciousWoman ≐ Woman ⊓ ($≤ 5 CHILD)

Mary: Woman,
CHILD:John,
CHILD:Sui,
CHILD:Karl

⊨ ConsciousWoman(Mary) ?

Based on [2]

Jarrar © 2023 25

Roles as Functions

A role is functional, is the filler functionally depends on the
individual, i.e., the role can be considered as a function:
R(x, y) Û f(x) = y.

For example, the roles CHILD and PARENT are not functional,
while the roles MOTHER and AGE are functional.

If a role is functional, we write:
$ f.C º f.c (selection operator)

Based on [2]

Jarrar © 2023 26

Individuals

In every interpretation different individuals are assumed to denote
different elements, i.e. for every pair of individuals a, b, and for
every interpretation I, if a ¹ b then aI ¹ bI.

This is called the Unique Name Assumption and is usually assumed
in database applications.

Example: How many children does this family have?
Family(f), Father(f,john), Mother(f,sue),
Son(f,paul), Son(f,george), Son(f,alex)

⊨ (≥ 3 Son)(f)

Based on [2]

Jarrar © 2023 27

Enumeration Type (one-of)

Weekday ≐ {mon, tue, wed, thu, fri, sat, sun}

WeekdayI ≐ {monI, tueI, wedI, thuI, friI, satI, sunI}

Citizen ≐ (Person ⊓ "LivesIn.Country)

Palestinian ≐ (Citizen ⊓ "LivesIn.{Palestine})

Jarrar © 2023 28

Racer
https://www.ifis.uni-luebeck.de/~moeller/racer/index.html

https://www.ifis.uni-luebeck.de/~moeller/racer/index.html

Jarrar © 2023 29

They offer reasoning services for multiple TBoxes and ABoxes.

They run as background reasoning engines.

They understand DIG, which is a simple protocol (based on
HTTP) along with an XML Schema.

Description Logic Reasoners

<impliesc>
<catom name=“Student"/>
<catom name=“Person"/>

</impliesc>

Student ⊑ PersonExample:

For example:

HermiT

Jarrar © 2023 30

DIG Interface
http://dig.sourceforge.net/

http://dig.sourceforge.net/

Jarrar © 2023 31

DIG Protocol

• DIG is only an XML schema for a description logic along with
ask/tell functionality

• You write a new Knowledge base (using the DIG XML syntax), and
send it to Racer using the TELL functionality.

• You can then write you Query/Question (using the DIG, XML
syntax), and send it to Racer using the ASK functionality.

• You may communicate with the Racer through HTTP or SOAP.

Jarrar © 2023 32

Create e a new Knowledge Base

<?xml version="1.0" encoding="UTF-8"?>
<newKB
xmlns="http://dl.kr.org/dig/2003/02/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"/>

<?xml version="1.0" encoding="UTF-8"?>
<response
xmlns="http://dl.kr.org/dig/2003/02/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd">
<kb uri="urn:uuid:abcdefgh-1234-1234-12345689ab"/>

The Response Message

The newKB Message

This URI should then be used during TELL and
ASK requests made against the knowledge base

Jarrar © 2023 33

Tell Syntax

<?xml version="1.0" encoding="ISO-8859-1"?>
<tells

xmlns="http://dl.kr.org/dig/2003/02/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"
uri="urn:uuid:abcdefgh-1234-1234-12345689ab">

<defconcept name="driver"/>
<equalc>

<catom name="driver"/>
<and>

<catom name="person"/>
<some>

<ratom name="drives"/>
<catom name="vehicle"/>

</some>
</and>

</equalc>
<defconcept name="person"/>
<defconcept name="vehicle"/>
<defrole name="drives"/>

</tells>

A TELL request must contain in its body a tells element, which itself consists of
a number of tell statements.

Driver ⊑ Person ⊓ $Drives.Vehicle

Based on [4]

Example:

Jarrar © 2023 34

Tell Syntax
Tell Language

Primitive
Concept
Introduction

<defconcept name="CN"/>
<defrole name="CN"/>
<deffeature name="CN"/>
<defattribute name="CN"/>
<defindividual name="CN"/>

Concept
Axioms

<impliesc>C1 C2</impliesc>
<equalc>C1 C2</equalc>
<disjoint>C1... Cn</disjoint>

Role Axioms <impliesr>R1 R2</impliesc>
<equalr>R1 R2</equalr>
<domain>R E</domain>
<range>R E</range>
<rangeint>R</rangeint>
<rangestring>R</rangestring>
<transitive>R</transitive>
<functional>R</functional>

Individual
Axioms

<instanceof>I C</instanceof>
<related>I1 R I2</related>
<value>I A V</value>

Concept Language

Primitive
Concepts

<top/>
<bottom/>
<catom name="CN"/>

Boolean
Operators

<and>E1... En</and>
<or>E1... En</or>
<not>E</not>

Property
Restrictions

<some>R E</some>
<all>R E</all>
<atmost num="n">R E</atmost>
<atleast num="n">R E</atleast>
<iset>I1... In</iset>

Concrete
Domain
Expressions

<defined>A</defined>
<stringmin val="s">A</stringmin>
<stringmax val="s">A</stringmax>
<stringequals val="s">A</stringequals>
<stringrange min="s"
max="t">A</stringrange>
<intmin val="i">A</intmin>
<intmax val="i">A</intmax>
<intequals val="i">A</intequals>
<intrange min="i" max="j">A</intrange>

Role
Expressions

<ratom name="CN"/>
<feature name="CN"/>
<inverse>R</inverse>
<attribute name="CN"/>
<chain>F1... FN A</chain>
Individuals <individual name="CN"/>

Jarrar © 2023 35

Ask Syntax
An ASK request must contain in its body an asks element.

Multiple queries in one request is possible.

<?xml version="1.0"?>
<asks

xmlns="http://dl.kr.org/dig/2003/02/lang">
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang"
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"
uri="urn:uuid:abcdefgh-1234-1234-12345689ab">
<satisfiable id="q1">

<catom name="Vehicle"/>
</satisfiable>
<descendants id="q2">

<and>
<catom name="person"/>
<some>

<ratom name="drives"/>
<catom name="vehicle"/>

</some>
</and>

</descendants>
<types id="q3">

<individual name="JohnSmith"></individual>
</types>

</asks>

KB |= Vehicle
asks about satisfiability of

the Vehicle concept

asks for all those concepts subsumed by
the description given, i.e. all the drivers

a | S |= Peron(a) ⊓$Drives.Vehicle

asks for the known types of the
given individual

C | S |= C(JohnSmith)

Jarrar © 2023 36

Ask Syntax
Ask Language

Primitive Concept
Retrieval

<allConceptNames/>
<allRoleNames/>
<allIndividuals/>

Satisfiability
<satisfiable>C</satisfiable>
<subsumes>C1 C2</subsumes>
<disjoint>C1 C2</disjoint>

Concept Hierarchy

<parents>C</parents>
<children>C</children>
<ancestors>C</ancestors>
<descendants>C<descendants/>
<equivalents>C</equivalents>

Role Hierarchy
<rparents>R</rparents>
<rchildren>R</rchildren>
<rancestors>R</rancestors>
<rdescendants>R<rdescendants/>

Individual Queries
<instances>C</instances>
<types>I</types>
<instance>I C</instance>
<roleFillers>I R</roleFillers>
<relatedIndividuals>R</relatedIndividuals>

Jarrar © 2023 37

Examples

of

Using Description Logic in Conceptual Modeling

and Business rules

Jarrar © 2023 38

UML Class diagram
(with a contradiction and an implication)

Person

Student Employee

PhD Student

Student ⊑ Person

PhDStudent ⊑ Person

Employee ⊑ Person

PhD Student ⊑ Student ⊓ Employee

Student ⊓ Employee ≐ ⊥

{disjoint}

Jarrar © 2023 39

Infinite Domain: the democratic company

Supervisor

Employee

Supervisor ⊑ $=2 Supervises.Employee

Employee ⊑ SupervisorSupervises

2..2

0..1

implies
“the classes Employee and Supervisor necessarily contain an infinite
number of instances”.
Since legal world descriptions are finite possible worlds satisfying the
constraints imposed by the conceptual schema, the schema is inconsistent.

Based on [3]

Jarrar © 2023 40

Example (in UML, EER and ORM)

Employee

Project

WorksFor

TopManager
Manages

Employee Project
WorksFor

Manages1..1

1..1

TopManger WorksFor

Manages

Project

TopManger

Employee
1..1

1..1

Jarrar © 2023 41

Example (in UML, EER and ORM)

Employee ⊑ $=1 WorksFor.Project

TopManager ⊑ Employee ⊓ $=1Manages.Project

Employee Project
WorksFor

Manages1..1

1..1

TopManger

WorksFor.Project ⊑ Manages.Project⊨
?

Jarrar © 2023 42

Another Example

Person

Course
Taught By

Study
1..3

1..1

StudentProfessor

{complete,disjoint}

Jarrar © 2023 43

Another Example

Person Car

Person ⊑ $=1 Owns.Car ⊓ $=1 Drives.Car

Drive ≐ Owns

Owns

• The first 1..1 cardinality constraint means that every person must owns one car.
• The second1..1 cardinality constraint means that every person must drives one car.
• The equal constraint means that every person who owns a car is allowed to only drive that

car, and vice versa.

è The equal constraint is implied by both cardinality constraints.

Drives

equal
1..1

1..1

Jarrar © 2023 44

Homework (Reason about UML/EER Diagrams)
1- Create a UML/EER diagram that contains some contradictions and
implications.

2- Formulate this diagram in description logic,

3- Write at least 5 questions (reasoning services) to know whether the
schema/concept/rule is satisfiable, and 3 questions whether something in the
schema is implied?

Hint: contradictions\implication can be achieved throw the wrong use of disjointness and
cardinality constraints (see examples in the next slide).

èPlease remark that this project is not only to help you practice Description Logics, but also: 1) build
correct UML/EER models and find problems automatically, 2) Reason about rules and business rules,
and 3) you think of another usage (open your mind)!

Each student should deliver one pdf file, contains: (1) the diagram (2) its formalization in
DL, (3) the reasoning questions.

Jarrar © 2023 45

Ontology

Recall that a TBox can be used to specify the meaning of a
terminology. That is, specify meaning in logic.

Recall that a TBox can be depicted in EER/UML

èYou may build your TBox in OWL (the Ontology Web Language),
and share it on the web, so that that others can use it a
reference to meaning of a terminology (ontology).

èThis will be the topic of the coming lectures.

