
Ontology Engineering -The DOGMA Approach

Mustafa Jarrar Robert Meersman

STARLab, Vrije Universiteit Brussel, Belgium,
 {mjarrar | meersman}@vub.ac.be

Abstract. This chapter presents a methodological framework for ontology
engineering (called DOGMA), which is aimed to guide ontology builders
towards building ontologies that are both highly reusable and usable, easier to
build and to maintain. We survey the main foundational challenges in ontology
engineering and analyse to what extent one can build an ontology
independently of application requirements at hand. We discuss ontology
reusability verses ontology usability and present the DOGMA approach, its
philosophy and formalization, which prescribe that an ontology be built as
separate domain axiomatization and application axiomatizations. While a
domain axiomatization focuses on the characterization of the intended meaning
(i.e. intended models) of a vocabulary at the domain level, application
axiomatizations focus on the usability of this vocabulary according to certain
application/usability perspectives and specify the legal models (a subset of the
intended models) of the application(s)’ interest. We show how specification
languages (such as ORM, UML, EER, and OWL) can be effectively (re)used in
ontology engineering.

Published as: Mustafa Jarrar and Robert Meersman: Ontology Engineering -The DOGMA
Approach. Book Chapter (Chapter 3). In Advances in Web Semantics I. Volume LNCS 4891,
Springer. 2008.

1 Introduction and motivation

The Internet and other open connectivity environments create a strong demand for
sharing the semantics of data. Ontologies are becoming increasingly essential for
nearly all computer science applications. Organizations are looking towards them as
vital machine-processable semantic resources for many application areas. An
ontology is an agreed understanding (i.e. semantics) of a certain domain, axiomatized
and represented formally as logical theory in the form of a computer-based resource.
By sharing an ontology, autonomous and distributed applications can meaningfully
communicate to exchange data and thus make transactions interoperate independently
of their internal technologies.
Research on ontologies has turned into an interdisciplinary subject. It combines
elements of Philosophy, Linguistics, Logics, and Computer Science. Within computer
science, the research on ontologies emerged “mainly” within two subcommunities:
artificial intelligence (among scientists largely committed to building shared
knowledge bases) and database (among scientists and members of industry who are
largely committed to building conceptual data schemes, also called semantic data
models [V82]). This legacy in computer science brings indeed successful techniques

and methods to enrich the art of ontology engineering. However, some confusion on
how to reuse these techniques is witnessed. For example, many researchers have
confused ontologies with data schemes, knowledge bases, or even logic programs.
Unlike a conceptual data schema or a “classical” knowledge base that captures
semantics for a given enterprise application, the main and fundamental advantage of
an ontology is that it captures domain knowledge highly independently of any
particular application or task [M99b] [JDM03]. A consensus on ontological content is
the main requirement in ontology engineering, and this is what mainly distinguishes it
from conceptual data modeling. Neither an ontology nor its development process is a
single person enterprise [KN03].
The main goal of this chapter is to present a methodological framework for ontology
engineering (called DOGMA1 [M01] [J05]) to guide ontology builders towards
building ontologies that are both highly reusable and usable, easier to build, and
smoother to maintain. Some parts of this research has been published in earlier
articles such as [M96] [M99a] [J05a] [M99b] [JM02a] [JDM03] [J06] [JH07] [J07c].
This chapter provides an up-to-date specification of DOGMA based on [J05]. A
comprehensive view on DOGMA, its formalisms, applications, and supportive tools
can be found in [J05]. Others have also enriched our approach with special techniques
for ontology evolution [DDM07] [DM05], community-driven ontologies [DDM06],
ontology integration [DSM04], and visualization [P05] [TV06].
Before presenting the DOGMA methodological framework, we investigate and
illustrate (in section 2) the main foundational challenges in ontology engineering. We
argue that different usability perspectives (i.e. different purposes of what an ontology
is made for and how it will be used) hamper reusability and lead to different or even
to conflicting ontologies, although these ontologies might intuitively be in agreement
at the domain level. The more an ontology is independent of application perspectives,
the less usable it will be. In contrast, the closer an ontology is to application
perspectives, the less reusable it will be. From a methodological viewpoint, notice that
if a methodology emphasizes usability perspectives, or evaluates ontologies based
only on how they fulfill specific application requirements, the resultant ontology will
be similar to a conceptual data schema (or a classical knowledge base) containing
specific –and thus less reusable– knowledge. Likewise, if a methodology emphasizes
only on the independence of the knowledge and ignores application perspectives, the
resultant ontology will be less usable.
To tackle such a foundational challenge, we propose a methodological framework,
called DOGMA, in section 3. The idea of DOGMA, in nutshell, is that: an ontology is
doubly articulated into a domain axiomatization and application axiomatization2.
While a domain axiomatization is mainly concerned with characterizing the “intended
meanings” of domain vocabulary (typically shared and public), an application
axiomatization (typically local) is mainly concerned with the usability of these

1 Developing Ontology-Grounded Methods and Applications.
2 We use the term axiomatization in this chapter to mean an articulation or specification of

knowledge, as a set of axioms about a certain subject-matter. We interchange this term with
the term ontology in order to avoid the any misunderstanding of what an ontology is. For
example, a conceptual data schema or an application’s knowledge base is being named as
ontologies, which in our opinion are only application axiomatizations. We preserve the term
ontology to mean a domain axiomatization, which captures knowledge at the domain level.

vocabularies. The double articulation implies that all concepts and relationships
introduced in an application axiomatization are predefined in its domain
axiomatization. Multiple application axiomatizations (e.g. that reflect different
usability perspectives, and that are more usable) share and reuse the same intended
meanings in a domain axiomatization.
To illustrate this framework, one can imagine WordNet as a domain axiomatization,
and an application axiomatization built in OWL (or RDF, ORM, UML, etc). The
DOGMA methodology then suggests that all vocabulary in the OWL axiomatization
should be linked with word-senses (i.e. concepts) in WordNet. In this way, we gain
more consensus about application axiomatizations; we improve the usability of
application axiomatizations and the reusability of domain axiomatizations; application
ontologies that are built in the same way (i.e. commit to the same domain
axiomatizations) will be easier to integrate, etc.
The DOGMA approach goes farther and suggests the notion of “ontology base” for
representing domain axiomatizations in a manner easy to evolve and use (see section
3). The basic building block of ontology base is called lexon, a content-specific
lexical rendering of a binary conceptual relation. As we shall explain later application
axiomatizations then commit to an ontology base containing those lexons.

2 Fundamental Challenges in Ontology Engineering

In this section, we investigate and specify several challenges in ontology engineering.
We examine to what extent one can build an ontology independently of application
requirements. We discuss ontology reusability verses ontology usability, then we
present the work done by other researchers in relation to these challenges. To end, we
draw some important requirements for ontology engineering.
Ontologies are supposed to capture knowledge at the domain level independently of
application requirements [G97] [CJB99] [M99a] [SMJ02]. We may argue this is in
fact the main and most fundamental asset of an ontology. The greater the extent to
which an ontology is independent of application requirements, the greater its
reusability3, and hence, the ease at which a consensus can be reached about it.
Guarino indeed in [G97] posited that“Reusability across multiple tasks or methods
should be systematically pursued even when modeling knowledge related to a single
task or method: the more this reusability is pursued, the closer we get to the intrinsic,
task-independent aspects of a given piece of reality (at least, in the commonsense
perception of a human agent).”

Ontology application-independence is not limited to the independence of
implementation requirements - it should also be considered at the conceptual level.
For example, notice that application-independence is the main disparity between an
ontology and a classical data schema (e.g. EER, ORM, UML, etc.) although each
captures knowledge at the conceptual level [JDM03]. Unlike ontologies, when

3 Notice that ontology usability is subtly different from ontology reusability. Increasing the

reusability of knowledge implies the maximization of its usage among several kinds of tasks.
Increasing ontology usability could just mean maximizing the number of different
applications using an ontology for the same kind of task.

building a data schema the modeling decisions depend on the specific needs and tasks
that are planned to be performed within a certain enterprise, i.e. for “in-house” usage.
The problem is that when building an ontology, there always will be intended or
expected usability requirements -“at hand”- which influence the independency level
of ontology axioms. In the problem-solving research community, this is called the
interaction problem. Bylander and Chandrasekaran[BC88] argue that “Representing
knowledge for the purpose of solving some problem is strongly affected by the nature
of the problem and the inference strategy to be applied to the problem.”
The main challenge of usability influence is that different usability perspectives (i.e.
differing purposes of what an ontology is made for and how it will be used) lead to
different –and sometimes conflicting– application axiomatizations although these
might agree at the domain level.

Example

The following example illustrates the influence of some usability perspectives when
modeling ontologies in the Bibliography domain. Ontology A in Figure 1 and
ontology B in Figure 2 are assumed to have been built autonomously; ontology A is
built and used within a community of bookstores, and ontology B is built and used
within a community of libraries4. Although both ontologies “intuitively” agree at the
domain level, they differ formally because of the differences in their communities’
usability perspectives. Obviously, building ontologies under strong influence of
usability perspectives leads to more application-dependent, and thus less reusable
ontologies.

Fig. 1. Ontology A.

4 Notice that the goal of this example is neither to discuss the Bibliography domain itself, nor to

present adequate an ontology - we use it only for illustration purposes.

Fig. 2. Ontology B.

In the following, we examine the influence of usability perspectives on the modeling
decisions of both conceptual relations and ontology rules, respectively.
Modeling conceptual relations. The concept ‘Author’ in ontology B is attributed with
the ‘First Name’ and the ‘Last Name’ concepts. Such details (i.e. granularity) are not
relevant to bookstore applications; they are not specified in ontology A. Similarly,
unlike ontology A, the pricing relations {Valuated-By(Book, Price), Amounted-
To(Price, Value), Measured-In(Price, Currency)} are not relevant for library
applications, so they are not specified in ontology B.
From such differences, one can see that deciding the granularity level and the scope
boundaries depend on the relevance to the intended (or expected) usability. Although
such differences do not necessarily constitute a disagreement between both
axiomatizations, they hamper the reusability of both ontologies. In order to reuse such
ontologies, the reusing applications need to make some adaptations, viz. introducing
the incomplete knowledge and dismissing the “useless” knowledge that normally
distracts and scales down the reasoning/computational processes.
Modeling ontology rules. Notice that both ontologies in the example above do not
agree on the notion of what is a “Book”. Although both ontologies agree that the ISBN
is a unique property for the concept book (see the uniqueness rules5), they disagree
whether this property is mandatory for each instance of a book. Unlike ontology B,
ontology A axiomatizes that each instance of a book must have an ISBN value (see
the mandatory rule6). This rule implies for example that “PhD Theses” or “Manuals”,
etc. would not be considered instances of books in ontology A because they do not
have an ISBN, while they would be under ontology B.
One can see from this example that modeling the ISBN as mandatory property for all
instances of the concept book is naturally affected by bookstores’ business
perspective. Obviously, bookstores communicate only the books “that can be sold”
and thus “commercially” should have ISBN, rather than perusing the notion of book
at the domain level. Nevertheless, at the domain level, both bookstore and library
applications intuitively share the same concept of what is really a book. For example,
suppose that one assigns an ISBN for an instance of a “PhD Thesis”. This instance
can then be considered as a book for bookstores. If however, the ISBN is removed for
an instance of a book, then this instance will no longer be a book, even though it still
refers to the same real life object and is still being referred to and used as a book.

5 The uniqueness rule in ORM is equivalent to 0:1 cardinality restriction. (notation: ‘ ’), it

can be verbalized as “each book must have at most one ISBN”.
6 The mandatory rule in ORM is equivalent to 1-m cardinality restriction. (notation:
‘ ’), it can be verbalized as “each book must have at least one ISBN”.

Accordingly, as ontology rules are supposed to formally specify/constrain the
permitted models7 that can necessarily hold for a given domain, determining such
rules, in practice is dominated by “what is permitted and what is not” for the intended
or expected usability.
Furthermore, besides the modeling decisions of ontology rules, the determination of
the number and the type of these rules (the reasoning scenario) are also influenced by
usability perspectives. For example, a light-weight axiomatization (e.g. with a
minimum number of rules or formalities) might be sufficient if the ontology is to be
accessed and used by people (i.e. not computers). Depending on the application
scenario other types of ontology rules (i.e. modeling primitives/constructs) might be
preferred over the ORM set of rules (which are easier to reason for database and XML
based applications).
At this point, we conclude that even application-types might intuitively agree on the
same semantics at the domain level, but the usability influence on axiomatizing this
semantics may lead to different (or even conflicting) axiomatizations. An
axiomatization might be more relevant for some applications than others, due to the
difference of their usability perspectives. This issue presents an important challenge
to the nature and the foundation of ontology engineering.

Related work

A general overview on ontology engineering methodologies is provided by [GFC04:
pp.113-153], including short descriptions of the methods. A very recent list is given
by [PT06], who do not provide details of the various methods but rather shortly
situate them. It is nevertheless a very good starting point for further bibliographic
research.

Guarino et al. have argued (in e.g. [G98a]) that in order to capture knowledge at the
domain level, the notion of what is an ontology should be more precisely defined.
Gruber’s commonly used but somewhat schematic definition [G95] of an ontology is
“an explicit specification of a conceptualization”, and refers to an extensional
("Tarski-like") notion of a conceptualization as found e.g. in [GN87]. Guarino et al.
point out that this definition per se does not adequately fit the purposes of an
ontology. They argue, correctly in our opinion, that a conceptualization should not be
extensional because a conceptualization benefits from invariance under changes that
occur at the instance level and from transitions between different “states of affairs”8 in
a domain. They propose instead a conceptualization as an intensional semantic
structure i.e. abstracting from the instance level, which encodes implicit rules
constraining the structure of a piece of reality. Therefore in their words, “an ontology
only indirectly accounts for a conceptualization”. Put differently, an ontology
becomes a logical theory which possesses a conceptualization as an explicit, partial
model. The resulting OntoClean methodology for evaluating ontological decisions
[GW02] consists of a set of formal notions that are drawn from Analytical Philosophy
and called meta-properties. Such meta-properties include rigidity, essence, identity,

7 Also called “ontology models”.
8A state of affairs refers to a particular instance of reality, or also called a possible world.

unity, and dependence. The idea of these notions is to focus on the intrinsic properties
of concepts, assumed to be application-independent.
Clearly in the previous example the two axiomatizations should therefore not be seen
as different ontologies since they only differ on their description of extensions i.e.
states of affairs. Both axiomatizations implicitly share the same intensional semantic
structure or conceptualization. Furthermore, the ISBN is an extrinsic property since it
is not rigid9 for all instances of the concept “book”. Therefore, it cannot be used to
specify the intended meaning of a book at the domain level.
An important problem of the OntoClean methodology, in our opinion, is its
applicability. First of all it relies on deep philosophical notions that in practice are not
easy or intuitive to teach and utilize –at least for “nonintellectual” domain experts;
and secondly it only focuses on the intrinsic properties of concepts and such
properties are often difficult to articulate. For example, how to formally and explicitly
articulate the identity criteria of a book (or person, brain, table, conference, love,
etc.)? Guarino and Welty state in [WG01]: “We may claim as part of our analysis that
people are uniquely identified by their brain, but this information would not appear in
the final system we are designing”. In short, it would seem that OntoClean can be
applied mainly by highly trained intellectuals for domain analysis and ontological
checks10.
Ontology usability is also important. This is another factor that should not be ignored,
especially with regards to the philosophically inspired research on ontologies (or the
so-called “philosophical ontology” as in [S03a]). In keeping with current views in the
field of information technology, ontologies are to be shared and used collaboratively
in software applications. This gives even more weight to the importance of ontology
usability.

Conclusions

The closer an axiomatization is to certain application perspectives, the more usable it
will be. In contrast, the more an axiomatization is independent of application
perspectives, the more reusable it will be. In other words, there is a tradeoff between
ontology usability and ontology reusability.
From a methodological viewpoint, if a methodology emphasizes usability perspectives
or evaluates ontologies based on how they fulfill specific application requirements,
the resulting ontology will be similar to a conceptual data schema (or a classical
knowledge base) containing application specific and thus, less reusable knowledge.
Likewise, if a methodology emphasizes the independency of the knowledge, the
resulting ontology in general will be less usable, since it has no intended use by
ignoring application perspectives.
Based on the above, we conclude the following ontology engineering requirement:

The influence of usability perspectives on ontology axioms should be well
articulated, pursuing both reusability and usability.

9 “A property is rigid if it is essential to all its possible instances; an instance of a rigid property

cannot stop being an instance of that property in a different world” [WG01].
10 See [GGO02] for a successful application of OntoClean on cleaning up WordNet.

3 The DOGMA approach

In this section, we present the DOGMA approach for ontology engineering, which
aims to tackle the engineering challenges stated in the previous section. In section 3.1
we schematically illustrate the DOGMA approach. The DOGMA philosophy is
presented in section 3.2. Section 3.3 presents the formalization of the notion of
Ontology Base for representing domain axiomatization, and section 3.4 presents how
applications axiomatizations can built and used.

3.1 Overview

As we mentioned before, in DOGMA, we introduce the notion of ontology base for
capturing domain axiomatizations; and we introduce the notion of application
axiomatization, by which particular applications commit to an ontology base, i.e. a
domain axiomatization and its application axiomatizations. see figure 3.

Fig. 3 DOGMA framework.

The ontology base is intended to capture “plausible” domain axiomatizations. It
basically consists of a set of binary conceptual relations. The lexical rendering of a
binary conceptual relation is called lexon. A lexon is described as a tuple of the form
<: Term1, Role, InvRole, Term2>, where Term1 and Term2 are linguistic terms.  is a
context identifier, used to bound the interpretation of a linguistic term: notably, for
each context  and term T, the pair (, T) is assumed to refer to a uniquely identifiable
concept. Role and InvRole are lexicalizations of the paired roles in any binary
relationship, for example WorkingFor/Employing, or HasType/IsTypeOf.
Particular applications now may commit to the ontology base through an application
axiomatization. Such a commitment is called application’s ontological commitment11.
Each application axiomatization consists of (1) a selected set of lexons from an
ontology base; (2) a specified set of rules to constrain the usability of these lexons.

11 We sometimes use the notion of application’s “ontological commitment” and the notion

“application axiomatization” interchangbly in this chapter. It is also worth to note that the
notion of “ontological commitment” as found in [GG95] generally refers to a
“conceptualization”, literally, it is defined as “a partial semantic account of the intended
conceptualization of a logical theory.”

Example

Resuming the Bibliography example above, the table at the left of Figure 5 shows a
Bibliography ontology base. The (ORM) graphs at the right show two application
axiomatizations (Bookstore and Library axiomatizations) by which particular
applications might make a commitment to and share this same Bibliography ontology
base. Notice that all conceptual relations in both application axiomatizations
correspond to (or are derived from) lexons in the Bibliography ontology base. In this
way, different application axiomatizations share and reuse the same intended
meaning of domain concepts. As we shall show later, application axiomatizations can
be represented not only in ORM (as shown in figure 5), but in any specification
language such as OWL, EML, EEU, etc.

Fig. 5. Particular applications commit to a DOGMA ontology base through their

respective application axiomatizations.

3.2 The DOGMA philosophy (Application vs. Domain Axiomatization)

This section presents the fundamental idea of DOGMA. We introduce the notion of
domain and application axiomatizations, and the formal relationship between them
(called double-articulation). We discuss and formalize which type of knowledge
should be captured in a domain verses application axiomatization. The translation of
this philosophy into a software implementation is presented in section 3.3 and 3.4.
As we have discussed in section 2, decreasing the influence of usability perspectives
is a principal engineering requirement when axiomatizing domain concepts. To
capture knowledge at the domain level, one should focus on characterizing the
intended meaning of domain vocabularies (i.e. domain concepts), rather than on how
and why these concepts will be used. A domain axiomatization becomes an axiomatic
theory that captures the axioms that account for (i.e. characterizes) the intended
meaning of the domain vocabularies.
This motivates us to understand the relationship between a domain vocabulary and the
specification of its intended meaning in a logical theory.

In general, it is not possible to build a logical theory to specify the complete and exact
intended meaning of a domain vocabulary12. Usually, the level of detail that is
appropriate to explicitly capture and represent it is subject to what is reasonable and
plausible for domain applications. Other details will have to remain implicit
assumptions. These assumptions are usually denoted in linguistic terms that we use to
lexicalize concepts, and this implicit character follows from our interpretation of these
linguistic terms.
Incidentally, the study of the relationship between concepts and their linguistic terms
is an ancient one; for example Avicenna (980-1037) [Q91] already argued that “There
is a strong relationship/dependence between concepts and their linguistic terms,
change on linguistic aspects may affect the intended meaning… Therefore logicians
should consider linguistic aspects ‘as they are’. …”13.
Indeed, the linguistic terms that we usually use to name symbols in a logical theory
convey some important assumptions, which are part of the conceptualization that
underlie the logical theory. We believe that these assumptions should not be excluded
or ignored (at least by definition) as indeed they implicitly are part of our
conceptualization.
Hence, we share Guarino and Giaretta’s viewpoint [GG95], that an ontology (as
explicit domain axiomatization) only approximates its underlying conceptualization;
and that a domain axiomatization should be interpreted intensionally, referring to the
intensional notion of a conceptualization. They point out that Gruber’s [G95] earlier
mentioned definition does not adequately fit the purposes of an ontology since a mere
re-arrangement of domain objects (i.e. different state of affairs) would correspond to
different conceptualizations. Guarino and Giaretta argue that a conceptualization
benefits from invariance under changes that occur at the instance level by transitions
between merely different “states of affairs” in a domain, and thus should not be
extensional. Instead, they propose a conceptualization as an intensional semantic
structure (i.e. abstracting from the instance level), which encodes implicit rules
constraining the structure of a piece of reality. Indeed, this definition allows for the
focus on the meaning of domain vocabularies (by capturing their intuitions)
independently of a state of affairs. See [G98a] for the details and formalisms.

3.2.1 Definition (double articulation, intended models, legal models)

Given a concept C as a set of rules (i.e. axioms) in our mind about a certain thing in
reality, the set I of “all possible” instances that comply with these rules are called the
intended models of the concept C. Such concepts are captured at the domain
axiomatization level. An application Ai that is interested in a subset IAi of the set I
(according to its usability perspectives), is supposed to provide some rules to
specialize I. In other words, every instance in IAi must also be an instance in I:

IAi  I
We call the subset IAi: the legal models (or extensions) of the application’s concept
CAi. Such application rules are captured at the application axiomatization level. Both

12 This is because of the large number of axioms and details that need to be intensively captured

and investigated, such detailed axiomatizations are difficult -for both humans and machines-
to compute and reason on, and might holds “trivial” assumptions.

13 This is an approximated translation from Arabic to English.

domain and application axiomatizations can be seen (or expressed) for example as
sentences in first order logic.
We call the relationship (defined above) between a domain axiomatization and an
application axiomatization: double articulation14.
As we have illustrated in the previous section, bookstore applications that are
interested only in the instances of the concept ‘book’ (that can be sold) need to declare
the Mandatory rule that each instance of book must have an ISBN value.
In Figure 6 we show three kinds of applications specializing a domain concept.

Fig. 6 An example of three different applications specializing a domain concept.

The differences between the legal models of these application-types illustrate their
different usability perspectives:
 The intersection between the legal models of CA2 and the legal models CA3 shows

that IA3 is a subset of IA2. An example of this case could be the difference between
notions of ‘book’ in the axiomatization of bookstores and libraries: all legal
instances of the bookstores’ notion are legal instances for the libraries, but not vice
versa. For libraries, the instances of e.g. ‘Manual’ or ‘Master Thesis’ can be
instances of a ‘book’; however, they cannot be instances of ‘book’ for bookstores,
unless they are published with an ‘ISBN’.

 The difference between IA1 and IA3 shows an extreme case: two types of
applications sharing the same concept C while their legal models are completely
disjoint according to their usability perspectives. An example of this case could be
the difference between notions of ‘book’ in the axiomatization of bookstores’ and
museums’: Museums are interested in exhibiting and exchanging instances of old

14 The term “double articulation” in this chapter simply means expressing knowledge in a

twofold axiomatization. The term “articulation” in WordNet means: “Expressing in coherent
verbal form”, “The shape or manner in which things come together and a connection is
made”, etc. In the semiotics and linguistics literature, the term “double articulation” has been
introduced by [N90][M55] (which has a different meaning and usage than ours) to refer to
the distinction between lexical and functional unites of language or between content and
expression.

‘books’, while bookstores are not interested in such ‘books’, unless for example,
they are re-edited and published in a modern style.

One may wonder how domain concepts can be agreed upon because of the difficulty
in gaining an objective insight into the nuances of another person’s thoughts. Many
researchers admit that a conceptualization reflects a particular viewpoint and that it is
entirely possible that every person has his/her “own” (linguistic manner of referring
to) concepts. For example, Bench-Capon and Malcolm argued in [BM99] that
conceptualizations are likely to be influenced by personal tastes and may reflect
fundamental disagreements. In our opinion, herein lies the importance of linguistic
terms.
Linguistic resources (such as lexicons, dictionaries, and glossaries) can be used as
consensus references to root ontology concepts [J06] [M99a]. In other words,
ontology concepts and axioms can be investigated using such linguistic resources and
it can be determined whether a concept is influenced by usability perspectives. We
explain this idea further in the following paragraphs.
The importance of using linguistic resources in this way lies in the fact that a
linguistic resource renders/contains the intended meaning of a linguistic term as it is
commonly "agreed" among the community of its language. The set of concepts that a
language lexicalizes through its set of word-forms is generally an agreed
conceptualization15 [T00]. For example, when we use the English word 'book', we
actually refer to the set of implicit rules that are common to English-speaking people
for distinguishing 'books' from other objects. Such implicit rules (i.e. concepts) are
learned and agreed from the repeated use of word-forms and their referents. Usually,
lexicographers and lexicon developers investigate the repeated use of a word-form
(e.g. based on a comprehensive corpus) to determine its underlying concept(s). See
[J06] for more details about the incorporation of linguistic resources in DOGMA.
Other researchers have also used linguistic resources in ontology engineering in other
ways [BSZS06] [PS06].

3.2.2 On representing domain axiomatizations

In this section, we discuss some choices that are relevant for representing domain
axiomatizations.
A domain axiomatization merely cannot be a list of linguistic terms, and their
intended meanings cannot be completely implicit. The intended meaning of linguistic
terms should be axiomatized and represented by means of a formal language.
From a methodological viewpoint, such a formal language should be content-oriented
rather than syntax-oriented. This language should serve as a theoretical tool which
guides ontology builders through its primitives, and restrict them to focus only on and
represent the “kinds” of axioms that account for the intended meaning of domain
vocabularies.
By analogy, the conceptual “data” modeling languages ORM and EER provide
database designers a set of primitives with which they can be guided to build a
normalized database schema. Indeed, ORM and EER can be seen as content-oriented
languages, because they restrict the focus of database designers to the integrity of
data models.

15 Thus, we may view a lexicon of a language as an informal ontology for its community.

An example of the difference between conceptual data modeling primitives and the
kind of primitives that account for the intended meaning of a vocabulary16 is the
difference between the “Rigid” and “Mandatory”. Something can be mandatory but
not rigid, as in the case of ‘ISBN’ which is not a rigid property for every instance of a
‘book’ but could be mandatory for some applications. In other words, to model
something as a rigid property, it should be rigid in all possible applications, while
what can be mandatory for an application might not be mandatory for another. See
[JDM03][GHW02] for more discussions on such issues.
Current research trends on ontology languages within the Semantic Web and the
description logic communities are mainly concerned with improving logical
consistency and inference services. Such services in our opinion are more suitable for
building knowledge base applications or expert systems rather than axiomatizing
“domain concepts”. Significant results within the description logic community have
indeed been achieved in the development of expressive and decidable logics, such as
DLR [CGDL01], SHOIN [HST99], etc., yet less attention has been given to the
quality of ontological content.
 “…I was annoyed by the fact that knowledge representation research was more and
more focusing on reasoning issues, while the core problems of getting the right
representations were not receiving that much attention…”. (Nicola Guarino17).
An example of a modeling primitive in the SHOQ description logic which in our
opinion, should not be allowed in axiomatizing domain concepts since it does not
account for meaning, is datatypes [P04]. Such a primitive belongs mainly to the
symbolic level. In short, description logics (and their derivative languages such as
DAML+OIL, or OWL) seem to play a useful role in specifying application (rather
than domain) axiomatizations.
We shall return, in section 3.4 to the use of both conceptual data modeling languages
and description logic based languages, for modeling and representing application
axiomatizations.
We observe two possible ways to capture formal domain axiomatizations: (1) as an
arbitrary set of axioms, e.g. using description logic, or (2) through a knowledge
representation model (e.g. a database). The first case is common within the Semantic
Web and Artificial Intelligence communities; in this case ontology builders are
responsible (i.e. unguided) to decide whether an axiom accounts for the intended
meaning of a vocabulary. This way offers ontology builders more freedom and
expressiveness, but the risk of encoding usability perspectives is still high. In the
second case, ontology builders are restricted only to capturing and storing the kind of
axioms that account for factual meaning; assuming that the representation model is
well studied and designed to pursue such axioms. This way is less expressive than the
first one, but it reduces the risk of mixing domain and application axioms. The second
way offers scalability in accessing and retrieving axioms, which is usually a
problematic issue in the first way. The second way is mostly used within the lexical
semantics community, e.g. WordNet [MBFGM90], Termintography [KTT03]. Notice

16 i.e. conceptual data modeling vs. conceptual domain modeling.
17 An interview with Nicola Guarino and Christopher Welty (9 June 2004): http://esi-

topics.com/erf/2004/june04-ChristopherWelty.html

that both ways are (or should be) well formalized and map-able to first order logic,
and thus can be seen as logical theories.
We have chosen the second way for our approach. As we will show in section 3.3, we
have developed a data model for capturing domain axiomatizations called an ontology
base.

3.2.3 Summary: properties of domain axiomatization

In this section, we summarize the basic properties of a domain axiomatization: it is (1)
an axiomatized theory (2) that accounts for the intended meaning of domain
vocabularies; (3) it is intended to be shared and used as a vocabulary space for
application axiomatizations. It is supposed to be (4) interpreted intensionally, (5) and
investigated and rooted at a human language conceptualization.

3.3 The notion of an (Ontology Base), for capturing domain axiomatizations

An ontology base is a knowledge representation model for capturing domain
axiomatizations. This notion is used as a core component in the DOGMA approach.
Basically, an ontology base consists of a set of lexons. A lexon is a plausible binary
relationship between context-specific linguistic terms, or in other words, a lexical
rendering of a –plausible– binary conceptual relation.

3.3.1 Definition (Lexon)

A lexon is a 5-tuple of the form:

 21 ,',,: rr

Where:
 is a context identifier (the notion of context will be defined shortly).

T1 and T2 are linguistic terms from a language L.
r and r’ are lexicalizations of the paired roles in a binary conceptual relationship
R; the role r’ is the inverse of the role r. One can verbalize a lexon as (T1 r T2), and
(T2 r’ T1). For example, the role pair of a subsumption relationship could be:
“Is_type_of” and “Has_type”; the role pair of a parthood relationship could be:
“Is_part_of” and “Has_part”, and so forth.

 The following is a set of lexons, as a simple example of part of an ontology base:

<Commerce: Person, Issues, Issued by, Order>
<Commerce: Order, Settled Via, Settles, Payment Method>
<Commerce: Money Order, Is a type of, Has type, Payment Method>
<Commerce: Check, Is a type of, Has type, Payment Method>
<Commerce: Payment Card, Is a type of, Has type, Payment Method>
<Commerce: Credit Card, Is a type of, Has type, Payment Card>
<Commerce: Credit Card, Has, Is of, Expiration Date>

3.3.2 Definition (Concept)

A term T within a context  is assumed to refer to uniquely identified concept C:
CT ),(

Notice, for example, that within the context ‘Commerce’, the linguistic term ‘Order’
refers to “A commercial document used to request someone to supply something in
return for payment”. It may refer to other concepts within other contexts, e.g. within
the context ‘Military’, the term ‘Order’ refers to “A command given by a superior that
must be obeyed”18. Further detail about the notion of context will be discussed in the
next section.
As we have discussed earlier, a concept is circumscribed by a set of rules in our mind
about a certain thing in reality. The notion of intended meaning (or word
meaning/sense) can be used alternatively with the notion of concept to denote
something. The set of all possible instances (i.e. in all possible stats of affairs) that
comply with these rules are called intended models.
As part of the context for each concept in DOGMA, there must be a gloss. A gloss is
an auxiliary informal account for the commonsense perception of humans of the
intended meaning of a linguistic term. The purpose of a gloss is not to provide or
catalogue general information and comments about a concept, as conventional
dictionaries and encyclopedias do [MBFGM90]. A gloss, for formal ontology
engineering purposes, is supposed to render factual knowledge that is critical to
understanding a concept, but that is unreasonable or very difficult to formalize and/or
articulate explicitly. Although a gloss is not intended to be processed by machines,
but its content is controlled by a set of well-defined guidelines (see [J06] for more
details), such as: It should start with the principal/super type of the concept being
defined; It should be written in the form of propositions; it should focus on
distinguishing characteristics and intrinsic properties that differentiate the concept
from other concepts; It should be consistent with the lexons and formal definitions,
etc.

3.3.3 Definition (Role)

A role is an axiomatic entity lexically expressing how a concept (referred by a term
within a context) relates to another concept. A lexon being a binary relationship
always involves two roles.
A role within a context is not intended to refer to a concept; thus, Cr ),( is

improper. In other words, our notion of role does not refer to a “stand alone” unary
(or binary) concept. Rather, roles only lexicalize the participation of a “unary
concept” in an n-ary conceptual relationship. As the notion of a lexon is a lexical
rendering of a binary conceptual relationship, we formalize a lexon as two context-
specific terms playing mutual roles, that both refers to a binary concept (typically
called binary conceptual relation):

2),,(),,,(CrTrT  

The notation of a context-specific term playing a role  rT ,, is called concept-role.

For practical purposes, we shall not require for both roles to be explicitly lexicalized
within a lexon. We assume that at least one role is to be lexicalized, represented as
<Bibliography, Book, is-a, , Written Material>.

18 These two definitions of the term “Order” are taken from WordNet, (May 2004)

http://www.cogsci.princeton.edu/cgi-bin/webwn.

A DOGMA ontology base contains only binary relationships. This does not deny the
existence of ternary (or n-ary) relationships. Ternary resp. n-ary relationships may
always be converted into an equivalent set of 3, resp. n, binary relationships, possibly
with the introduction of new terms/concepts. In practice relationships are however
mainly binary.

3.3.4 Definition (Mapping lexons into first order logic)

With each lexon  21 ,',,: rr in the ontology base there correspond three

statements in first order logic, as follows:

))(),(()(21 yTyxryxTx 

))(),('()(12 xTxyrxyTy 

),('),(, xyryxryx 

For example, the mapping of the lexon <Commerce: Person, Issues, IssuedBy,
Order> into first order logic produces:

))(),(()(yOrderyxIssuesyxPersonx 

))(),(()(xPersonxyIssuedByxyOrdery 

),(),(, xyIssuedByyxIssuesyx 

Notice that Context is not part of our formal mapping of lexons. As we shall discuss
in the next section, a context for our purposes here is a mostly informal notion used to
link unambiguously (i.e. bound) the interpretation of a linguistic term to a concept.
Linguistic terms, e.g. ‘Person’, ‘Order’, etc. can be seen as unambiguous terms (i.e.
concepts) within the lexon formal mapping. A lexon (or its formal mapping) is
assumed to be plausible (i.e. to be a weak axiom) within its context, see section 3.3.5.
In section 3.3.6 we shall discuss how to introduce further formal axiomatizations at
the ontology base level, for targeting systematic ontological quality.
Finally, our formal lexon mapping assumes unique role names. Each role label (or
InvRole) should be unique within the formal mapping of lexons. As this is might not
be the case in practice, one can provide an “internal” naming convention, for
example, by renaming ‘Issues’ as ‘Issues_Order’ and ‘IssuedBy’ as
‘IssuedBy_Person’.

At this point, we have established how lexons are the basic building blocks of an
ontology base and that they express basic domain facts. The principal role of an
ontology base is to be a shared vocabulary space for application axiomatizations. As
sharing lexons means sharing the same concepts and their intended models, semantic
interoperability between classes of autonomous applications can be achieved,
basically, by sharing a certain set of lexons19 and agreeing on their interpretation
(commitments, see below in 3.4).

19 As we shall show in section 3.4, a class of interoperating applications may need to agree on

and share some rules that constrain the use of a concept, i.e. share the same legal models.

3.3.5 The notion of context

The notion of context has been, and still is, the subject of occasionally intense study,
notably in the field of Artificial Intelligence. It has received different interpretations.
Commonly, the notion of context has been realized as a set of formal axioms (i.e. a
theory) about concepts. It has been used among other things: to localize or encode a
particular party’s view of a domain, cf. C-OWL [BHGSS03]; as a background, micro-
theory, or higher-order theory for the interpretation of certain states of affairs [M93];
and to facilitate the translation of facts from one context to another, as in KIF
[PFP+92].
In our approach, we shall use the notion of context to play a “scoping” role at the
ontology base level. We say a term within a context refers to a concept, or in other
words, that context is an abstract identifier that refers to implicit (or maybe tacit20)
assumptions, in which the interpretation of a term is bounded to a concept.
Notice that a context in our approach is not explicit formal knowledge. In practice, we
define context by referring to a source (e.g. a set of documents, laws and regulations,
informal description of “best practice”, etc.), which, by human understanding, is
assumed to “contain” those assumptions. Lexons are assumed (by that same human
understanding) to be “plausible within their context’s source”. Hence, a lexon is seen
as a (weak) domain axiom.

Note. For ease of readability, we will in lexons continue to use a (unique)
mnemonic label such as Commerce or Bibliography to denote a context rather than an
abstract context identifier (pointer to a resource) in the representations of lexons
below. To wit, Bibliography will point to a document in which a human interpreter,
possibly assisted by programs, finds sufficient “context” to at least disambiguate both
terms used in the lexon.

3.3.6 Further formal axiomatizations (incorporating upper level ontologies)

In order to achieve a systematic ontological quality and precision21 on the
specification of the intended meanings of linguistic terms, these specifications might
need to receive more formal restrictions, than just mapping lexons into logical
statements.
For example, without introducing further formal restrictions to the following lexons:

<Bibliography: Man, Is-a, Person>
<Bibliography: Author, Is-a, Person>
<Bibliography: John, Is-a, Person>

20 The difference between implicit and tacit assumptions, is that the implicit assumptions can,

in principle, be articulated but still they have not, while tacit assumptions are the knowledge
that cannot be articulated. it consists partially of technical skills -the kind of informal, hard-
to-pin-down skills captured in terms like “know-how”, and “we know more than we can tell
or put in words”. However, even though tacit assumptions cannot be articulated, they can be
transferred through other means over than verbal or formal descriptions [Inn+03] [N94].

21 The notion of “ontological precision” is defined by Aldo Gangemi in [G04] as “the ability to
catch all and only the intended meaning”.

The ontological difference (or rather, the misuse of ‘is-a’) cannot be systematically
detected22. In this section, we discuss how a formal axiomatic system can be
introduced into an ontology base.
As we have chosen to represent formal domain axiomatization in a data model (i.e.
ontology base), arbitrary and expressive formal definitions are restricted (see our
discussion on this issue in section 3.2.3). Therefore, we extend the ontology base
model to incorporate primitives of upper level ontologies. Our incorporation of upper
level ontologies in this chapter is fairly simplistic; the deeper philosophical arguments
that are necessary for such incorporation are presented schematically for the sake of
completeness only. It is important to note that upper ontologies are still very much
exponents of work in progress. Upper level ontologies are formal axiomatic systems
that describe the most general categories of reality. Such ontologies are not only
application and task independent but represent also domain (and possibly language)
independent axiomatizations [DHHS01] [G98b].
Based on the literature of upper level ontologies as found for example in [DHHS01]
[G98b], we introduce in our approach the notion of upper-form. Each term within a
context should have an upper-form, likewise, each lexon should have an upper-form.

Term upper-forms
Term upper-forms are superior types of concepts, such as substantial, feature,
abstract, region, event, process, type, role, property, particular, etc. The notation of a
term upper-form declaration is:

 ameUpperFormNT :)(

Examples:
Bibliography(Person):Substantial,
Bibliography(Author):Substantial,
Bibliography(First-Name):Property

A term can have several upper-forms, denoted }...,{:)(UpperFormT . Examples:
Bibliography(Person):{Substantial, Type},
Bibliography(Author):{Substantial, Role},
Bibliography(John):{Substantial, Instance}.

Lexon upper-forms
Lexon upper-forms are relationship kinds, also called “basic primitive relations”, such
as parthood, dependence, property-of, attribution, subsumption, etc. Such relationship
kinds are carefully and formally axiomatized in upper level ontologies, and they are
general enough to be applied in multiple domains. Our notation of a lexon upper-form
declaration is

 ameUpperFormNrr :,',,: 21

For instance, the lexon “<Bibliography: Book, Is-a, HasType, Written Material>: Subsumption”
is declared as a subsumption relationship where the concept ‘Book’ formally

22 By assuming that the ‘is-a’ refers to a subsumption relationship (i.e. Sub-Type of), only the

first lexon is correct. The ‘is-a’ in the second lexon should interpreted as “is role of”, because
‘Author’ is a role of ‘Person’ and not a type of a ‘Person’; and obviously, the last lexon refers
to ‘is instance of’. See [GW02] for more details on this issue.

subsumes the concept ‘Written Material’. Similarly the declaration “<Bibliography:

Book, Has-Part, Is-Part-Of, Chapter>: Parthood” now states that the lexon lexically
expresses a particular parthood (meronymy) relationship, where within the context of
Bibliography, an instance of the concept ‘chapter’ is a part of an instance of the
concept ‘Book’. And “<Bibliography: Author, Has, Is-Of, Name>: Property” declares the
lexon as a property-of relationship, where the concept ‘Name’ is a property of the
concept ‘Author’, and so forth.
Upper-forms may carry with them a formal axiomatization and reasoning mechanism,
as defined in an associated upper level ontology,.They may thus be used to add a
formal account to lexons. For example, a formal account of the lexon “<Bibliography,

John, instance-of, Author>: Instantiation” may include or be induced from a (partial)
formal axiomatization of the instantiation relationship such as found in [GGMO01]:

Instantiation(x,y) → ¬Instantiation(y,x)
(Instantiation(x,y) Instantiation(x,z)) → (¬Instantiation(y,z)  ¬Instantiation(y,z))

Particular(x) def ¬y (Instantiation(y,x))

Universal(x) def ¬Particular(x)

Fig. 7 A formal axiomatization of Instantiation,, from [GGMO01].

Similarly Parthood, Subsumption etc. may become interpreted from their formal
axiomatizations in [GGMO01]. For instance, under the formal axiomatization of the
‘Subsumption’ relationship in [GGMO01], the following lexon would be inadmissible
because its declared upper-form conflicts with the adopted axiomatization of the term
upper-forms, where Role may no longer subsume Type:

Bibliography(Person):{Substantial, Type}
Bibliography(Author):{Substantial, Role}
<Bibliography: Author, Is-a, , Person>: Subsumption

Notice that formal axiomatizations of such upper forms are not necessarily to be used
at runtime by applications that use or share lexons. Their main purpose could be as
theoretical tools to help achieve verifiable quality during development and
maintenance time of an ontology.
Note that our methodological principles and their implementation prototypes are not
dependent on a particular choice of upper level ontology. This is left to ontology
builders. However, libraries of upper-ontology plug-ins may be envisaged complete
with predefined reasoning, for ontology builders to apply on selected sets of lexons as
part of so-called commitments. This constitutes the foundational principle of
application axiomatization in DOGMA as explained in the following section.

3.4 Application axiomatization

The notion of an ontology base was introduced in order to capture domain
axiomatizations independently of usability perspectives. In this section, we introduce
the second part of the double articulation: application axiomatizations. First, we

discuss the general properties of these axiomatizations; then, we introduce the key
notion of an application’s ontological commitment.
While the axiomatization of domain knowledge is mainly concerned with the
characterization of the “intended models” of concepts, the axiomatization of
application knowledge is mainly concerned with the characterization of the “legal
models” of these concepts (see Fig. 6). Typically, as domain axiomatizations are
intended to be shared, public, and highly reusable at the domain level, application
axiomatizations are intended to be local and highly usable at the task/application-kind
level.
As we have discussed earlier, applications that are interested only in a subset of the
intended models of a concept (according to their usability perspective) are supposed
to provide some rules to specialize these intended models. Such a specialization is
called an application axiomatization. The vocabulary of concepts used in application
axiomatization is restricted to the vocabulary defined in its domain axiomatization.
(Note that this “specialization” should therefore not be confused with the subsumption
relationship discussed earlier.) As clarified below, an application axiomatization
comes defined as a set of rules that constrain the use of the domain vocabulary. More
specifically, these rules declare what must necessarily hold in any possible
interpretation for a given class of applications.
A particular application is said to commit ontologically to an intended meaning of a
domain vocabulary (stored as lexons in an ontology base) through its application
axiomatization., i.e. the latter may be considered a formal specification of such a
commitment.

An application axiomatization typically consists of: (1) an ontological view that
specifies which domain concepts in an ontology base are relevant to include in this
axiomatization. These concepts can be explicit lexons or derived from lexons, (2) a
set of rules that defines the legal models of the ontological view in the classical
model-theoretic semantics sense, i.e. it formally specifies what must or must not hold
in any possible world (interpretation) for the applications sharing this axiomatization.
We say that a particular extension of an application (i.e. a set of instances) commits to
an ontology base through an application axiomatization if it conforms to or is
consistent with the ontological view and the rules declared in this axiomatization (cf.
model-theoretic semantics).
Speaking in operational terms, the eventual execution of an ontological commitment
by an interpreter (or reasoner) provides an enforcer for the constraints on that
application’s intended behavior with its concepts, as laid down in the application’s
axiomatization. It is important to realize at this point that applications can run
meaningfully without such an executed formal commitment to an ontology case –in
fact most of today’s legacy applications do– but clearly this happens “at their own
risk” of producing –literally– meaningless results now and then.

3.4.1 Example

This example is based on that presented in Section 3.1. In this application scenario
software agents wish to interoperate through a semantic mediator in order to exchange
data messages and share business transactions (see Figure 9). The interoperation is
enabled by the sharing of the same Bookstore axiomatization, i.e. as a global and legal

data model23. The data source (or its “export schema” [ZD04]) of each agent is
mapped into the shared axiomatization. All exchanged data messages (e.g. those
formed in XML, RDF, etc.) may be validated whether they conform to the rules and
the ontological view declared in the Bookstore axiomatization, for example under
classical first-order model-theoretic semantics [R88].
The ontological view of the above bookstore axiomatization specifies which concepts
are relevant for the task(s) of this application scenario. These concepts correspond to
explicit lexons in the ontology base, or they might be derived from these lexons. One
can see in the ontology base that a ‘Book’ is not explicitly a ‘subtype of’ a ‘Product’ as
specified in the Bookstore axiomatization. This subsumption is derived from the two
lexons {<Bibliography: Book, Is-A, Has-Type, Written Material>, <Bibliography: Written Material,

Is-A, Has-Type, Product>}. Based on these subsumptions, some inheritance also might
be derived; for example, ‘Book’ inherits the relationship <Bibliography: Book, Written-By,

Writes, Author> from its Written Material supertype. The choice of which concepts and
relations should be committed to is an application-specific issue or may be subject to
a usability perspective. See our discussion on this in Section 2.
In the Bookstore axiomatization, four rules are declared and may be conveniently
verbalized: 1) each Book Has at least one ISBN; 2) each Book Has at most one ISBN;
3) each ISBN Is-Of at most one Book; 4) a Book may be Written-by several
Author/s)and 5) an Author may Write/s several Book/s.
Notice that this approach enables usability perspectives to be encountered and
encoded outside domain axiomatization. In turn, this indeed increases the usability of
application axiomatizations as well as it increases the reusability of the underlying
domain axiomatization.

23 This way of sharing and using axiomatizations (as global schema) seems more applicable to

data integration and mediation systems [ZD04]. They can also be used to describe web
services [NM02]. For example, an axiomatization could be specified for each web service (to
describe the “static” information provided to/by a web service), so that all agents accessing a
web service share the same axiomatization.

Fig. 9 Meaningful semantic interoperation between Bookstore applications.

Depending on the application scenario, application axiomatizations may be used in
different ways. For example, in the Semantic Web and information search/retrieval
scenarios, declaring rules might be not important because the main idea of these
scenarios is to expand (rather than to constrain) queries. Filtering the unwanted results
(i.e. illegal models) usually then falls within the responsibility of the application itself.
In [J05] we presented such an application scenario of an ontology-based user
interface, in which complaint web forms meaningfully share, through explicit
ontological commitments, a vocabulary of relationships stored as a DOGMA Server
lexon base.

To increase usability of application axiomatizations, they might be specified in
multiple specification languages, such as DAML+OIL, OWL, RuleML, EER, UML,
etc. Figure 10 shows the above Bookstore axiomatization expressed in OWL.

….
<owl:Class rdf:ID="Product" />
<owl:Class rdf:ID="Book">
 <rdfs:subClassOf rdf:resource="#Product" />
</owl:Class>
<owl:Class rdf:ID="Price" />
<owl:Class rdf:ID="Value" />
<owl:Class rdf:ID="Currency" />
<owl:Class rdf:ID="Title" />
<owl:Class rdf:ID="ISBN" />
<owl:Class rdf:ID="Author" />
<owl:ObjectProperty rdf:ID="Valuated-By">
 <rdfs:domain rdf:resource="#Product" />
 <rdfs:range rdf:resource="#Price" />
</owl:ObjectProperty>
<owl:DataProperty rdf:ID=" Amounted-To .Value">
 <rdfs:domain rdf:resource="#Price" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DataProperty>
<owl:DataProperty rdf:ID="Measured-In.Currency">
 <rdfs:domain rdf:resource="#Price" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DataProperty>
<owl:DataProperty rdf:ID=“Has.ISBN">
 <rdfs:domain rdf:resource="#Book" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer "/>
</owl:DataProperty>
<owl:DataProperty rdf:ID=“Has.Title">
 <rdfs:domain rdf:resource="#Title" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DataProperty>
<owl:ObjectProperty rdf:ID="Written-By">
 <owl:inverseOf rdf:resource="#Writes "/>
 <rdfs:domain rdf:resource="#Book" />
 <rdfs:range rdf:resource="#Author" />
</owl:ObjectProperty>
<owl:Restriction>
 <owl:onProperty rdf:resource="# Has.ISBN " />
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
….

Fig. 10. An OWL representation of the Bookstore ontological commitment.

Although both representations share the same intended meaning of concepts at the
domain (/ontology base) level, notice the disparities between ORM and OWL in
representing the Bookstore axiomatization. For example, ORM does not distinguish
between DataProperties and ObjectProperties as does OWL. This is an example of an
epistemological difference24. The ORM uniqueness constraint that spans over
“Written-By/Writes” cannot be expressed in OWL, as it is implied by definition25.

24 Epistemology level: The level that deals with the knowledge structuring primitives (e.g.

concept types, structuring relations, etc.). [G94].
25 The formalization of ObjectProperties in OWL does not allow the same tuple to appear twice

in the same set, such as Written-By = {<author1, book1>, < author1, book1>,…}.

The other uniqueness and mandatory constraints are all expressed as a cardinality
restriction in OWL.
The logical and epistemological disparities described above (which are induced by the
difference between the formalizations and the constructs of both languages) illustrate
different ways of characterizing the legal models of application axiomatizations. The
choice of which language is more suitable for specifying application axiomatizations
depends on the application scenario and perspectives. For example, ORM and EER
are mainly suitable for database and XML (-based) application scenarios since they
are comprehensive in their treatments of the integrity of data sets. For inference and
reasoning application scenarios, description logic based languages (such as OWL,
DAML, etc.) seem to be more applicable than other languages, as they focus on the
expressiveness and the decidability of axioms. See [J07][J07b] for the complete
formalization of ORM in description logics. In this work we also identify which ORM
constructs cannot be mapped into OWL. We have also implemented this
formalization to reason about ORM diagrams using Racer (See [JD06]).
Allowing different languages, optimized techniques, or methodologies to be deployed
at the application axiomatization level will indeed increase the usability of these
axiomatizations. A recent application axiomatization language called Ω-RIDL
[VDM04] has been developed within the DOGMA framework. It is claimed to better
suited to the database applications’ commitment to an ontology base.

4 Discussion and conclusions

In this chapter, we have presented a comprehensive view of the DOGMA approach
for ontology engineering. We have shown how application verses domain
axiomatizations can be well articulated. We have introduced the notion of an ontology
base for capturing domain axiomatizations, and the notion of application
axiomatizations by which particular applications commit to the intended meaning of
domain vocabulary.
In the following we summarize the main advantages of our approach:
Increase reusability of domain axiomatization, as well as usability of application
axiomatizations. As we have shown in this chapter, the application-independence of
an ontology is increased by separating domain and application axiomatizations.
Usability perspectives have a negligible influence on the independence of a domain
axiomatization, because ontology builders are prevented from encoding their
application-specific axioms. In other words, domain axiomatizations are mainly
concerned with the characterization of the “intended models” of concepts, while
application axiomatizations are mainly concerned with the characterization of the
“legal models” of these concepts.
Allows different communities to create and maintain domain axiomatization (typically
public) and application axiomatizations (typically local). Indeed, domain experts,
lexicographers, knowledge engineers, and even philosophers, may contribute to the
development, maintenance, and review phases of domain axiomatizations. It is
needless for them to know why and how these axiomatizations will be used.
Application-oriented experts can also contribute to and focus on the development
phases of application axiomatizations, without needing to know about the correctness

of domain axioms. Hence, we offer an ontology representation model that is capable
of distributed and collaborative development.
Allows the deployment of differently optimized technologies and methodologies to
each articulation. For example, relational database management systems can be used
(with high scalability and performance) to store and retrieve large-scale ontology
bases. Natural language parsing and understanding techniques can be employed for
extracting lexons from texts. Different specification languages can be used to specify
application axiomatizations and these increase the usability of these axiomatizations.
Furthermore, the importance of linguistic terms in ontology engineering is observed
and incorporated in our approach [SD04]. Not coincidentally, our approach allows
for the adoption and reuse of many available lexical resources to support (or to serve
as) domain axiomatizations. Lexical recourses (such as lexicons, glossaries,
thesauruses and dictionaries) are indeed important recourses of domain concepts.
Some resources focus mainly on the morphological issues of terms, rather than
categorizing and clearly describing their intended meanings. Depending on its
description of term meaning(s), its accuracy, and maybe its formality26, a lexical
resource can play an important role in ontology engineering.
An important lexical resource that is organized by word meanings (i.e. concepts, or
called synsets) is WordNet [MBFGM90]. WordNet offers a machine-readable and
comprehensive conceptual system for English words. Currently, a number of
initiatives and efforts in the lexical semantic community have been started to extend
WordNet to cover multiple languages. As we have discussed in section 3.2.1, the
consensus about domain concepts can be gained and realized by investigating these
concepts at the level of a human language conceptualization. This can be practically
accomplished e.g. by adopting the informal description of term meanings that can be
found in lexical resources such as WordNet, as glosses.
Acknowledgement. We are in debt to all present and former colleagues in STARLab
for their comments, discussion, and suggestions on the earlier version of this work.

References

 [BC88] Bylander, T., Chandrasekaran, B.: Generic tasks in knowledge-based reasoning: The
right level of abstraction for knowledge acquisition. In Knowledge Acquisition for
Knowledge Based Systems. Vol. 1. Academic Press, London. (1988) pp. 65–77

 [BHGSS03] Bouquet, P., van Harmelen, F., Giunchiglia, F., Serafini, L., Stuckenschmidt H.:
C-OWL: Contextualizing ontologies. Proceedings of the second International Semantic Web
Conference - ISWC’03, Sanibel Island, Florida. October (2003)

[BM99] Bench-Capon T.J.M., Malcolm G.: Formalising Ontologies and Their Relations.
Proceedings of DEXA’99. (1999) pp. 250–259

[BSZS06] Bouquet, P., Serafini, L., Zanobini, S., and Sceffer, S. 2006. Bootstrapping
semantics on the web: meaning elicitation from schemas. In Proceedings of the World Wide
Web Conf (WWW '06). ACM Press, New York, NY, 505-512. (2006).

[CGDL01] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification
constraints and functional dependencies in description logics. In Proceedings of the 17th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 155–160, 2001.

26 i.e., the discrimination of term meanings in a machine-referable manner.

[CJB99] Chandrasekaran, B., Johnson, R., Benjamins, R.: Ontologies: what are they? why do
we need, them?. IEEE Intelligent Systems and Their Applications. 14(1). Special Issue on
Ontologies. (1999) pp. 20–26.

[DDM06] De Moor, A.; De Leenheer, P.; Meersman, M.: DOGMA-MESS: A Meaning
Evolution Support System for Interorganizational Ontology Engineering. In the 14th
International Conference on Conceptual Structures (ICCS 2006), Volume 4068, Aalborg,
Denmark, p.189-203, (2006)

[DDM07] De Leenheer, P., de Moor, A., and Meersman, R.: Context Dependency Management
in Ontology Engineering: a Formal Approach. Journal on Data Semantics VIII, LNCS 4380,
Springer-Verlag, pp. 26-56, (2007).

[DHHS01] Degen, W., Heller, B., Herre, H. and Smith, B.: GOL: Towards an Axiomatized
Upper-Level Ontology. In Formal Ontology in Information Systems. Proceedings of the
FOIS 2001. ACM Press. New York: October (2001) pp. 34–46

[DM05] De Leenheer P., Meersman R., Towards a formal foundation of DOGMA ontology
Part I: Lexon base and concept definition server, TR STAR-2005-06, Brussel, 2005

[DSM04] De Bo, J., SpynsP., Meersman, R. : Assisting Ontology Integration with Existing
Thesauri. In, On the Move to Meaningful Internet Systems 2004. In, Meersman R., Zahir T.
et al.,(eds.), p.801-818,LNCS 3290, (2004)

[G04] Gangemi, A.: Some design patterns for domain ontology building and analysis. An
online presentation (http://www.loa-cnr.it/Tutorials/OntologyDesignPatterns.zip April 2004)

[G94] Guarino, N.: The Ontological Level. In R. Casati, B. Smith and G. White (eds.),
Philosophy and the Cognitive Science. Hölder-Pichler-Tempsky, Vienna: 443-456. (1994)

[G95] Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies, 43(5/6) (1995)

[G98a] Guarino, N.: Formal Ontology in Information Systems. Proceedings of FOIS’98, IOS
Press, Amsterdam. (1998) pp. 3–15

[G98b] Guarino, N.: Some Ontological Principles for Designing Upper Level Lexical
Resources. In: A. Rubio, N. Gallardo, R. Castro and A. Tejada (eds.): Proceedings of First
International Conference on Language Resources and Evaluation. ELRA - European
Language Resources Association, Granada, Spain. (1998)

[GG95] Guarino, N. and Giaretta, P.: Ontologies and Knowledge Bases: Towards a
Terminological Clarification, in: Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing, N. Mars (ed.), pp 25-32, IOS Press, Amsterdam (1995).

[GGMO01] Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A.: Understanding toplevel
ontological distinctions. Proceedings of IJCAI-01 Workshop on Ontologies and Information
Sharing. AAAI Press. Seattle, USA, (2001) pp. 26–33

[GGO02] Gangemi, A., Guarino, N., Oltramari A., Borgo, S.: Cleaning-up WordNet's top-
level. Proceedings of the 1st International WordNet Conference. January (2002)

[GHW02] Guizzardi, G., Herre, H., Wagner G.: Towards Ontological Foundations for UML
Conceptual Models. proceedings of the 1st International Conference on Ontologies,
Databases and Application of Semantics (ODBASE’02), Lecture Notes in Computer
Science, Vol. 2519, Springer-Verlag, Berlin. (2002) pp. 1100–1117

[GN87] Genesereth, M.R., Nilsson, N.J.: Logical Foundation of Artificial Intelligence. Morgan
Kaufmann. Los Altos, California. (1987)

[GW02] Guarino, N. and Welty, C.: Evaluating Ontological Decisions with OntoClean.
Communications of the ACM, 45(2). (2002) pp. 61–65

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive
description logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings
of the 6th International Conference on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

[Inn+03] Persidis A., Niederée C., Muscogiuri C., Bouquet P., Wynants M.: Innovation
Engineering for the Support of Scientific Discovery. Innovanet Project (IST-2001-38422),
deliverable D1. (2003)

[J05] Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD thesis,
Vrije Universiteit Brussel, May 2005.

[J05a] Jarrar, M.: Modularization and automatic composition of Object-Role Modeling (ORM)
Schemes. In OTM 2005 Workshops, proceedings of the International Workshop on Object-
Role Modeling (ORM'05). Volume 3762, LNCS, Pages (613-625), Springer. ISBN:
3540297391. November 2005.

[J06] Jarrar, M.: Towards the notion of gloss, and the adoption of linguistic resources in formal
ontology engineering. In proceedings of the 15th International World Wide Web Conference
(WWW2006). Scotland. Pages 497-503. ACM Press. ISBN: 1595933239. May 2006.

[J07c] Jarrar, M.: Towards Effectiveness and Transparency in e-Business Transactions, An
Ontology for Customer Complaint Management. A book chapter in "Semantic Web
Methodologies for E-Business Applications". IGI Global. ISBN: 978-1-60566-066-0.
Chapter 7. (October 2008)

[J07] Mustafa Jarrar: Towards Automated Reasoning on ORM Schemes. -Mapping ORM into
the DLR_idf description logic. Proceedings of the 26th International Conference on
Conceptual Modeling (ER 2007). Volume 4801, LNCS, Pages (181-197), Springer.
ISBN:9783540755623. New Zealand. November 2007

[J07b] Mustafa Jarrar: Mapping ORM into the SHOIN/OWL Description Logic- Towards a
Methodological and Expressive Graphical Notation for Ontology Engineering. In OTM
workshops, proceeding of the International Workshop on Object-Role Modeling (ORM'07).
Volume 4805, LNCS, Pages (729-741), Springer. ISBN: 9783540768890. Portogal.
November, 2007

 [JDM03] Jarrar, M., Demy, J., Meersman, R.: On Using Conceptual Data Modeling for
Ontology Engineering. Journal on Data Semantics, Special issue on "Best papers from the
ER/ODBASE/COOPIS 2002 Conferences", LNCS Vol. 2800, Springer. ISBN: 3-540-
20407-5. October (2003) pp. 185–207

[JE06] Jarrar, M., Eldammagh, M.: Reasoning on ORM using Racer. Technical report, Vrije
Universiteit Brussel, Brussels, Belgium, August 2006.

[JH07] Mustafa Jarrar and Stijn Heymans: Towards Pattern-based Reasoning for Friendly
Ontology Debugging. Journal of Artificial Intelligence Tools. Volume 17. No.4. World
Scientific Publishing. August 2008.

[JM02a] Jarrar, M., Meersman, R.: Formal Ontology Engineering in the DOGMA Approach. In
proceedings of the International Conference on Ontologies, Databases, and Applications of
Semantics (ODBase 2002). Volume 2519, LNCS, Pages: 1238-1254, Springer.
ISBN:3540001069. October 2002.

[KN03] Klein, M., Noy.: A component-based framework for ontology evolution. Technical
Report IR-504, Vrije Universiteit Amsterdam. March (2003)

[KTT03] Kerremans, K., Temmerman, R. and Tummers, J.: Representing multilingual and
culture-specific knowledge in a VAT regulatory ontology: support from the termontography
approach. In OTM 2003 Workshops. Tübingen: Springer Verlag. (2003)

[M55] Martinet, A.: Economie des changements phonétiques, Berne: Francke, (1955) pp. 157-
158

[M93] McCarthy, J.: Notes on Formalizing Context. Proceedings of IJCAI’93. Morgan-
Kaufmann. (1993)

[M96] Meersman, R.: An essay on the Role and Evolution of Data(base) Semantics. In:
Meersman, R., Mark L. (eds.): Proceeding of the IFIP WG 2.6 Working Conference on
Database Applications Semantics (DS-6). CHAPMAN & HALL. Atlanta, USA. (1996)

[M99a] Meersman R.: The Use of Lexicons and Other Computer-Linguistic Tools. In: Zhang
Y., Rusinkiewicz M, & Kambayashi Y. (eds.): Semantics, Design and Cooperation of

Database Systems, The International Symposium on Cooperative Database Systems for
Advanced Applications (CODAS’99). Springer Verlag. Heidelberg. (1999) pp. 1–14

[M99b] Meersman R., Semantic Ontology Tools in Information System Design. In, Ras, Z. &
Zemankova, M.,(eds.), Proceedings of the ISMIS 99 Conference, LNCS 1609, Springer
Verlag. (1999) pp. 30–45

[M01] Meersman R., Ontologies and Databases: More than a Fleeting Resemblance, in d'Atri
A. and Missikoff M. (eds), OES/SEO 2001 Rome Workshop, Luiss Publications, 2001

[MBFGM90] Miller, G. Beckwith, R., Fellbaum, F., Gross, D., Miller, K.: Introduction to
wordnet: an on-line lexical database. International Journal of Lexicography, 3(4). (1990) pp.
235–244

[N90] Nöth, W.: Handbook of Semiotics. Bloomington, IN : Indiana University Press (1990)
[NM02] Nakhimovsky, A., Myers, T.: Web Services: Description, Interfaces and Ontology. In:

Geroimenko, V., Chen, C. (eds.): Visualizing the Semantic Web. Springer. ISBN 1-85233-
576-9. (2002) pp. 135–150.

[P05] Pretorius A. J. , Visual Analysis for Ontology Engineering. Journal of Visual Languages
and Computing , 16(4) : 359 - 381, 2005.

[PFP+92] Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T., Gruber, T., Neches, R.:
The DARPA Knowledge Sharing Effort: Progress Report. Proceedings of Knowledge
Representation and Reasoning. (1992) pp. 777–788

[PS06] Pazienza, M., Stellato, A.: Linguistic Enrichment of Ontologies: a methodological
framework Second Workshop on Interfacing Ontologies and Lexical Resources for
Semantic Web Technologies (OntoLex2006), Italy, 24-26 May 2006

[Q91] Qmair, Y.: Foundations of Arabic philosophy. Dar al-Shoroq. Beirut, ISBN 2-7214-
8024-3. (1991)

[R88] Reiter, R.: Towards a Logical Reconstruction of Relational Database Theory. In:
Readings in AI and Databases. Morgan Kaufman. (1988)

 [S03a] Smith, B.: Ontology. In: Floridi, L. (eds.): Blackwell Guide to the Philosophy of
Computing and Information. Oxford: Blackwell. (2003) pp. 155–166

[S95] Shapiro, S.: Propositional, First-Order And Higher-Order Logics: Basic Definitions,
Rules of Inference, Examples. In: Iwanska, L., Stuart, S., Shapiro, (eds.): Natural Language
Processing and Knowledge Representation: Language for Knowledge and Knowledge for
Language. AAAI Press/The MIT Press, Menlo Park, CA. (1995)

 [T00] Temmerman, T.: Towards New Ways of Terminology Description, the sociocognitive
approach. John Benjamins Publishing Company. Amsterdam. ISBN 9027223262. (2000)

[TV06] Trog D., Vereecken J.: Context-driven Visualization For Ontology Engineering.
Computer Science, Brussels, p.237, (2006)

[SMJ02] Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus Ontology engineering.
SIGMOD Record 31(4):12-17. ISSN: 01635808. March 2002.

[V82] Van Griethuysen, J.J., (Eds.): Concepts and Terminology for the Conceptual Schema and
Information Base. International Standardization Organization, Publication No.
ISO/TC97/SC5- N695. (1982)

[VDM04] Verheyden, P., De Bo, J., Meersman, R.: Semantically unlocking database content
through ontology-based mediation . InProceedings of the 2nd Workshop on the Semantic
Web and Databases (in conjuction with the 30th International Conference on Very Large
Databases), LNCS 3372, Springer Verlag. (2004)

[WG01] Welty, C., Guarino, N.: Support for Ontological Analysis of Taxonomic Relationships.
Journal of Data and Knowledge Engineering. 39(1). October (2001) pp. 51–74

[ZD04] Ziegler, P., Dittrich, K.: User-Specific Semantic Integration of Heterogeneous Data:
The SIRUP Approach. In Proceeding of the International Conference on Semantics of a
Networked World. LNCS, Springer, Paris, France. June (2004) pp. 14–44 .

