

Function Definition			
	Definition		
	A function f from a set X to a set Y, denoted $f: X \to Y$, is a relation from X, the domain, to Y, the co-domain, that satisfies two properties: (1) every element in X is related to some element in Y, and (2) no element in X is related to more than one element in Y. Thus, given any element x in X, there is a unique element in Y that is related to x by f. If we call this element y, then we say that "f sends x to y" or "f maps x to y" and write $x = f(x - y)$. The unique element to which f sends		
	x is denoted		
	f(x) and is called f of x , or the output of f for the input x , or the value of f at x , or the image of x under f .		
	The set of all values of f taken together is called the <i>range of f</i> or the <i>image of X under f</i> . Symbolically,		
	range of f = image of X under f = { $y \in Y y = f(x)$, for some x in X }.		
	Given an element y in Y, there may exist elements in X with y as their image. If $f(x) = y$, then x is called a preimage of y or an inverse image of y . The set of all inverse images of y is called <i>the inverse image of</i> y. Symbolically,		
	the inverse image of $y = \{x \in X \mid f(x) = y\}.$		

4

Equality of Functions				
	Theorem 7.1.1 A Test for Function Equality			
	If $F: X \to Y$ and $G: X \to Y$ are functions, then $F = G$ if, and only if, $F(x) = G(x)$ for all $x \in X$.			
Example:				
Let $F: \mathbf{R} \to \mathbf{R}$ and $G: \mathbf{R} \to \mathbf{R}$ be functions. Define new functions $F + G: \mathbf{R} \to \mathbf{R}$ and $G + F: \mathbf{R} \to \mathbf{R}$ as follows: For all $x \in \mathbf{R}$,				
(F+G)(x) = F(x) + G(x) and $(G+F)(x) = G(x) + F(x)$.				
Does $F + G = G + F$?				
	(F+G)(x) = F(x) + G(x) by definition of $F+G= G(x) + F(x) by the commutative law for addition of real numbers= (G+F)(x) by definition of G+F$			
	Hence $F + G = G + F$.			

(17)

Examples of Functions

Cartesian product

Define functions $M: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ and $R: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ as follows: For all ordered pairs (a, b) of integers,

M(a,b) = ab and R(a,b) = (-a,b).

M is the multiplication function that sends each pair of real numbers to the product of the two. R is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

Find the following:

a. $M(-1,-1) = 1$	d. $R(2,5) = (-2,5)$
b. $M(\frac{1}{2}, \frac{1}{2}) = \frac{1}{4}$	e. R(-2,5) =(2,5)
c. M($\sqrt{2}, \sqrt{2}$) =2	e. $R(3,-4) = (-3,-4)$

Examples of Functions String Functions $g: S \rightarrow Z$ g(s) = the number of a's in s. Find the following. a. $g(\epsilon)$ b. g(bb) c. g(ababb) d. g(bbbaa)

Examples of Functions

Logarithmic functions

• Definition Logarithms and Logarithmic Functions

Let *b* be a positive real number with $b \neq 1$. For each positive real number *x*, the **logarithm with base** *b* **of** *x*, written $\log_b x$, is the exponent to which *b* must be raised to obtain *x*. Symbolically,

$$\log_b x = y \quad \Leftrightarrow \quad b^y = x.$$

The **logarithmic function with base** *b* is the function from \mathbf{R}^+ to \mathbf{R} that takes each positive real number *x* to $\log_b x$.

- $\log_3 9 = 2$ because $3^2 = 9$.
- $\log_2(1/2) = -1$ because $2^{-1} = \frac{1}{2}$.
- $\log_{10}(1) = 0$ because $10^0 = 1$.
- $\log_2(2^m) = m$ because the exponent to which 2 must be raised to obtain 2^m is m.
- $2^{\log_2 m} = m$ because $\log_2 m$ is the exponent to which 2 must be raised to obtain m.

